Comparative Analysis of Car-Following Models for Emissions Estimation

Author:

Song Guohua1,Yu Lei2,Xu Long3

Affiliation:

1. Ministry of Education Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University, 3 Shangyuan Cun, Haidian District, Beijing 100044, China.

2. College of Science and Technology, Texas Southern University, 3100 Cleburne Avenue, Houston, TX 77004.

3. Beijing Transportation Research Center, 9 Liuliqiao Road, Fengtai District. Beijing 100073, China.

Abstract

Recent studies have indicated that the accuracy of the emissions estimation in a traffic simulation model can be little improved by using the traditional model calibration approaches. Instead, the model's internal mechanism in depicting the second-by-second vehicle activities needs to be investigated. Since the car-following model is the core component of a traffic simulation model, this paper attempts to conduct a comparative study of car-following models concerning their effects on the explanatory parameter of vehicle emissions, namely, the vehicle specific power (VSP) distribution. The car-following models selected for the analysis are the optimal velocity model (OVM), generalized force model (GFM), full velocity difference model (FVDM), Wiedemann model, and the Fritzsche model. Massive field car-following trajectories are collected, and a numerical simulation method is designed for each car-following model to generate its vehicle trajectories and the speed-specific VSP distributions. By a comparison of VSP distributions collected from the field and generated by car-following models, it was found that OVMs and GFMs generate unrealistic VSP distributions, which will lead to significant emissions estimation errors. By adding the variable of positive velocity difference, the FVDM can effectively improve the accuracy of the VSP distribution and emissions estimation. The VSP distribution of the Wiedemann model differs largely from the field data, which overestimate the peak VSP fraction and the fractions in aggressive driving modes. The Fritzsche model produces VSP distributions consistent with the field distributions. It is also found that the speed-specific VSP distribution is highly correlated with the acceleration distribution. Therefore, improving the accuracy of the speed-specific acceleration distribution is an effective measure to improve the accuracy of the VSP distribution and thus the emissions estimation of the car-following models.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3