Multilayer Boundary-Element Method for Evaluating Top-Down Cracking in Hot-Mix Asphalt Pavements

Author:

Sangpetngam Boonchai1,Birgisson Bjorn2,Roque Reynaldo2

Affiliation:

1. Dynamic Engineering Consultants Co., Ltd., SEATEC Group, 281 Soi Phanit Anan, Sukhumvit 71, Bangkok 10150 Thailand

2. Department of Civil and Coastal Engineering, University of Florida, 365 Weil Hall, P.O. Box 116580, Gainesville, FL 32611-6580

Abstract

Cracking in hot-mix asphalt (HMA) pavements is a major mode of premature failure. Recent work at the University of Florida has led to the development of a new viscoelastic fracture mechanics-based crackgrowth law called the HMA fracture mechanics law, which is capable of fully describing both initiation and propagation of cracks in asphalt mixtures. The successful simulations of crack growth for generalized pavement conditions depend largely on how well the state of stress can be predicted in and around existing cracks in pavements. Previous work has focused on the adaptation of a displacement-discontinuity boundary-element method for predicting stresses in the Superpave® indirect tensile test (IDT), which then were subsequently used to predict the crack initiation and crack growth in simulated IDT tests that used HMA fracture mechanics. The previous displacement-discontinuity boundary-element formulation is here extended into layered materials. Homogeneous layers are stitched together numerically in "welded" contact. The ability of the new numerical formulation to model the effects of temperature-induced stiffness gradients on tensile stresses at the top of two cracked pavement sections in Florida is demonstrated. These pavement sections were modeled with and without temperature-induced stiffness gradients. The introduction of stiffness gradients into the HMA layer is shown to increase the magnitude of tensile stresses at the top of the pavement, which is consistent with previous observations.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference12 articles.

1. Predicting Viscoelastic Response and Crack Growth in Asphalt Mixtures with the Boundary Element Method

2. Development of Efficient Crack Growth Simulator Based on Hot-Mix Asphalt Fracture Mechanics

3. Mechanics of Distributed Cracking

4. MyersL. A. Development and Propagation of Surface-Initiated Longitudinal Wheel Path Cracks in Flexible Highway Pavements. Ph.D. dissertation. University of Florida, Gainesville, 2000.

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3