Development of Efficient Crack Growth Simulator Based on Hot-Mix Asphalt Fracture Mechanics

Author:

Sangpetngam Boonchai1,Birgisson Bjorn1,Roque Reynaldo1

Affiliation:

1. Department of Civil and Coastal Engineering, University of Florida, 365 Weil Hall, P.O. Box 116580, Gainesville, FL 32611-6580

Abstract

It has long been accepted that cracking of hot-mix asphalt (HMA) pavements is a major mode of premature failure. Many state departments of transportation have verified that pavement cracking occurred not only in fatigue cracking in which a crack initiates from the bottom of the asphalt layer but also in other modes such as low-temperature cracking and the more recently identified top-down cracking. Recent work at the University of Florida has led to the development of a crack growth law based on viscoelastic fracture mechanics that is capable of fully describing both initiation and propagation of cracks in asphalt mixtures. The model requires the determination of only four fundamental mixture parameters, which can be obtained from less than 1 h of testing using the Superpave® indirect tensile test (IDT). These parameters can account for microdamage, crack propagation, and healing for stated loading conditions, temperatures, and rest periods. The generalization of the HMA crack growth law needed for its successful implementation into a displacement discontinuity boundary element method is described. The resulting HMA boundary element approach is shown to predict the crack propagation of two coarse-graded mixtures under cyclic IDT loading conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3