Service Reliability Measurement Using Automated Fare Card Data

Author:

Uniman David L.12,Attanucci John1,Mishalani Rabi G.3,Wilson Nigel H. M.4

Affiliation:

1. Room 1–274, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.

2. EMBARQ Center for Sustainable Transport—Mexico, Felipe Carrillo Puerto 54, Col. Villa Coyoacan, C.P. 04000, Mexico City, Mexico.

3. Ohio State University, 2070 Neil Avenue, Room 470, Columbus, OH 43210.

4. Room 1–238, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139.

Abstract

This paper explores the potential of using automated fare card data to quantify the reliability of service as experienced by passengers of rail transit systems. The distribution of individual passenger journey times can be accurately estimated for those systems requiring both entry and exit fare card validation. With the use of this information, a set of service reliability measures is developed that can be used to routinely monitor performance, gain insights into the causes of unreliability, and serve as an input into the evaluation of transit service. An estimation methodology is proposed that classifies performance into typical and nonrecurring conditions, which allows analysts to estimate the level of unreliability attributable to incidents. The proposed measures are used to characterize the reliability of one line in the London Underground under typical and incident-affected conditions with the use of data from the Oyster smartcard system for the morning peak period. A validation of the methodology with the use of incident-log data confirms that a large proportion of the unreliability experienced by passengers can be attributed to incident-related disruptions. In addition, the study revealed that the perceived reliability component of the typical Underground trip exceeds its platform wait time component and equals about half of its on-train travel time as well as its station access and egress time components, suggesting that sizable improvements in overall service quality can be attained through reliability improvements.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3