Full-Scale Experiment on Foam Bitumen Pavements in an Accelerated Testing Facility

Author:

Gonzalez Alvaro1,Cubrinovski Misko1,Pidwerbesky Bryan2,Alabaster David3

Affiliation:

1. School of Engineering, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.

2. Fulton Hogan Ltd., P.O. Box 39185, Christchurch 8545, New Zealand.

3. New Zealand Transport Agency, P.O. Box 1479, Christchurch, New Zealand.

Abstract

Foam bitumen stabilization is a viable alternative for reducing aggregate consumption in New Zealand. An accelerated full-scale experiment on foam bitumen pavements was conducted in the Canterbury Accelerated Pavement Testing Indoor Facility as part of a Transit New Zealand research project to study the effects of foam bitumen on unbound granular materials. Six pavement sections were tested. Three were constructed with foam bitumen contents of 1.2%, 1.4%, and 2.8% and with a common active filler content of 1.0% cement. Two more pavements were constructed with adding cement only (1.0%) and foam bitumen only (2.2%). In addition, one control section with the untreated unbound material was tested. Strains were collected with a three-dimension Emu soil strain system installed in each pavement section. Results showed that surface deflections decreased at sections with higher bitumen contents. After the application of 5,710,000 equivalent standard axles, the control section and all sections that had been stabilized with cement only and bitumen only showed large amounts of rutting. Conversely, little rutting was observed in the three sections stabilized with 2.2% foam bitumen and 1.0% cement. Water was introduced into these three pavements with additional accelerated loading; this caused the section with the lowest foam bitumen content to fail. These results showed that foam bitumen and cement had a significant effect on improving the performance of the materials studied. Material samples taken for indirect tensile strength (ITS) and repeat load triaxial (RLT) for laboratory tests showed that the ITS test was a good predictor of the pavement performance and produced a clear trend, although RLT results were not conclusive.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3