Evaluation of Structural Performance of Poroelastic Road Surfacing Pavement Subjected to Rolling–Truck Tire Loads

Author:

Srirangam S. K.1,Anupam K.1,Casey D.2,Liu X.1,Kasbergen C.1,Scarpas A.1

Affiliation:

1. Section of Road Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, Delft 2628 CN, Netherlands

2. Atkins Transportation, Broadgate House, Beeston, Nottinghamshire NG9 2HF, United Kingdom

Abstract

Road traffic is a major source of noise pollution. Road authorities and pavement researchers have been trying to reduce this noise pollution by laying quieter pavement surfaces. Poroelastic road surfaces (PERS) have been found to be the most effective solution because they are very porous and elastic in nature compared with conventional dense asphalt surfaces. However, the structural performance of PERS pavement under heavy traffic loads is still unknown. The aim of this study was to determine the critical stresses experienced by PERS pavement under heavy loads applied by a wide-base truck tire. For this purpose, finite element (FE) simulations of a wide-base truck tire rolling over a PERS pavement system were performed for various material properties of PERS and adhesive layers, speeds, tire loads, and inflation pressures. From the FE model results, the critical stress envelopes were constructed by using the concept of stress invariants. Stress invariants represent normal and shear stresses that might cause the PERS layer to fail under the critical combination of material, loading, and operating variables and therefore act as design indicators. The FE results showed that the higher contact pressures and the lower material stiffness resulted in higher stress invariants. It was also determined that the stiffness of the adhesive layer influenced the response of the PERS layer. The current study demonstrated a robust methodology for assessing the performance of a thin PERS layer pavement system under rolling–truck tire operating conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference23 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3