Enhancing the Raveling Resistance of Polyurethane Mixture: From the Perspective of Polyurethane Adhesive

Author:

Gao Junfeng,Wang Hainian,Chen Jiakang,Tang Boming

Abstract

Polyurethane mixture, made of waste rubber particle, aggregate, and polyurethane adhesive, has low raveling resistance which affects the durability of the mixture. The objective of this study is to enhance the raveling resistance of polyurethane mixture. The content of polyol in the hydroxyl component was determined by Fourier transform infrared spectroscopy. The suitable curing conditions for polyurethane adhesive to enhance the raveling resistance were selected by the orthogonal experiment and mechanical tests. The relationship of the raveling resistance with crosslink density and elastic modulus was tested and calculated through the wear test. The results showed that when the ratios of the isocyanate component to the hydroxyl component were 1:3.2, 1:6.3, and 1:9.5, respectively, the isocyanate component was excessive. The ranking of the significance of the influence factors, from high to low, was first the curing temperature, then curing time, and finally the blending ratio; within the ranges of blending ratio, curing temperature, and curing time selected in this study, the appropriate blending ratio was 10:2, and the curing time was 6 h. For the polyurethane mixture involved in this study to obtain high raveling resistance, if a crosslinking agent or a new polyurethane adhesive is added, the tensile strength and tensile elastic modulus should be in the range of 3.02 to 3.27 MPa and 5.50 to 6.02 MPa, respectively; when using the FS2 polyurethane adhesive directly, the suitable curing conditions for the mixture are 90 °C and 6 h or 80 °C and 6 h. The results from this study could be beneficial for obtaining a high raveling resistance for the polyurethane mixture.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Chongqing

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3