Intelligent Transportation System Data Archiving: Statistical Techniques for Determining Optimal Aggregation Widths for Inductive Loop Detector Speed Data

Author:

Gajewski Byron J.1,Turner Shawn M.2,Eisele William L.3,Spiegelman Clifford H.1

Affiliation:

1. Department of Statistics, Texas A&M University, Room 405B Blocker Building, College Station, TX 77843-3143

2. Department of Statistics, Texas A&M University, 404F Blocker Building, College Station, TX 77843-3143

3. Texas Transportation Institute, 405C CE/TTI Building, College Station TX, 77843-3135

Abstract

Although most traffic management centers collect intelligent transportation system (ITS) traffic monitoring data from local controllers in 20-s to 30-s intervals, the time intervals for archiving data vary considerably from 1 to 5, 15, or even 60 min. Presented are two statistical techniques that can be used to determine optimal aggregation levels for archiving ITS traffic monitoring data: the cross-validated mean square error and the F-statistic algorithm. Both techniques seek to determine the minimal sufficient statistics necessary to capture the full information contained within a traffic parameter distribution. The statistical techniques were applied to 20-s speed data archived by the TransGuide center in San Antonio, Texas. The optimal aggregation levels obtained by using the two algorithms produced reasonable and intuitive results—both techniques calculated optimal aggregation levels of 60 min or more during periods of low traffic variability. Similarly, both techniques calculated optimal aggregation levels of 1 min or less during periods of high traffic variability (e.g., congestion). A distinction is made between conclusions about the statistical techniques and how the techniques can or should be applied to ITS data archiving. Although the statistical techniques described may not be disputed, there is a wide range of possible aggregation solutions based on these statistical techniques. Ultimately, the aggregation solutions may be driven by nonstatistical parameters such as cost (e.g., “How much do we/the market value the data?”), ease of implementation, system requirements, and other constraints.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3