Urban Traffic Flow Prediction Based on Bayesian Deep Learning Considering Optimal Aggregation Time Interval

Author:

Fu Fengjie1,Wang Dianhai2,Sun Meng23,Xie Rui2,Cai Zhengyi24ORCID

Affiliation:

1. Department of Traffic Management Engineering, Zhejiang Police College, Hangzhou 310058, China

2. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China

3. Zhongyuan Institute, Zhejiang University, Zhengzhou 450000, China

4. School of Information and Electrical Engineering, Hangzhou City University, Hangzhou 310058, China

Abstract

Predicting short-term urban traffic flow is a fundamental and cost-effective strategy in traffic signal control systems. However, due to the interrupted, periodic, and stochastic characteristics of urban traffic flow influenced by signal control, there are still unresolved issues related to the selection of the optimal aggregation time interval and the quantifiable uncertainties in prediction. To tackle these challenges, this research introduces a method for predicting urban interrupted traffic flow, which is based on Bayesian deep learning and considers the optimal aggregation time interval. Specifically, this method utilizes the cross-validation mean square error (CVMSE) method to obtain the optimal aggregation time interval and to establish the relationship between the optimal aggregation time interval and the signal cycle. A Bayesian LSTM-CNN prediction model, which extends the LSTM-CNN model under the Bayesian framework to a probabilistic model to better capture the stochasticity and variation in the data, is proposed. Experimental results derived from real-world data demonstrate gathering traffic flow data based on the optimal aggregation time interval significantly enhances the prediction accuracy of the urban interrupted traffic flow model. The optimal aggregation time interval for urban interrupted traffic flow data corresponds to a multiple of the traffic signal control cycle. Comparative experiments indicate that the Bayesian LSTM-CNN prediction model outperforms the state-of-the-art prediction models.

Funder

Zhejiang Province Basic Commonweal Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3