Predicting Crashes on Expressway Ramps with Real-Time Traffic and Weather Data

Author:

Wang Ling1,Shi Qi1,Abdel-Aty Mohamed1

Affiliation:

1. Department of Civil, Environmental, and Construction Engineering, University of Central Florida, Orlando, FL 32816-2450.

Abstract

Limited research has been conducted on real-time crash analysis of expressway ramps, although there have been many studies in recent years on estimating real-time crash prediction models for main lines. This study presents Bayesian logistic regression models for single-vehicle (SV) and multivehicle (MV) crashes on expressway ramps by using real-time microwave vehicle detection system data, real-time weather data, and ramp geometric information. The results find that the logarithm of the vehicle count, average speed in a 5-min interval, and visibility are significant factors for the occurrence of SV and MV crashes. The Bayesian logistic regression models show that curved ramps and wet road surfaces would increase the possibility of an SV crash, and off-ramps would result in high risk of MV crashes. The high standard deviation of speed in a 5-min interval would significantly increase MV crash likelihood. Random Forests software was applied in variable importance analysis, and the results revealed that the most important factors influencing crashes on ramps were traffic variables, the second most important factors are weather variables, and the least important but still significant factor was the ramp geometry.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference25 articles.

1. Analysis of Crashes on Freeway Ramps by Location of Crash and Presence of Advisory Speed Signs

2. Assessment of freeway traffic parameters leading to lane-change related collisions

3. Multi-level Bayesian analyses for single- and multi-vehicle freeway crashes

4. OhC. OhJ.S. RitchieS. G., and ChangM. Real-Time Estimation of Freeway Accident Likelihood. Presented at 80th Annual Meeting of the Transportation Research Board, Washington, D.C., 2001.

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3