Detailed Observations of Saturation Headways and Start-Up Lost Times

Author:

Li Honglong1,Prevedouros Panos D.2

Affiliation:

1. Davies Pacific Center, Lyon Associates, Inc., 841 Bishop Street, Suite 2006, Honolulu, HI 96813

2. Department of Civil Engineering, University of Hawaii at Manoa, 2540 Dole Street, 383, Honolulu, HI 96822

Abstract

The analyses conducted in this research were based on three methodologies for the field measurement of saturation headways. The first method (M1), the one on which most past studies were based, measured the characteristics of Vehicles 4 to 12 in a standing queue. M2, the method found in the Highway Capacity Manual (HCM), counted all vehicles in a standing queue, regardless of queue length. M3 included arrivals that joined the standing queue as long as vehicles were up to 140 ft from the stop line. This study focused on one approach of a high-design intersection with heavy, random arrivals. The large number of observations and the practically ideal traffic conditions enabled the acquisition of several statistically significant results on saturation flow ( s), start-up lost time (SULT), and start-up response time (SRT): ( a) when long queues are present, the typical field measurement of s based on the first 12 vehicles is an overestimate of s for through vehicles and an underestimate of s for protected left-turning vehicles; ( b) the type of movement had a more dominant role in determining s than the level of saturation (or queue length); ( c) SRT displayed a bigger variation than headways— the left-turning movement had a significantly shorter SRT than the through movement did; and ( d) much higher SULTs were estimated in this study compared with those in the HCM.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3