Signal Priority near Major Bus Terminal

Author:

Furth Peter G.1,Cesme Burak1,Rima Tarannum2

Affiliation:

1. Department of Civil and Environmental Engineering, Northeastern University, 360 Huntington Avenue, Room 400, Snell Engineering Center, Boston, MA 02115.

2. Cambridge Systematics, 100 Cambridge Park Drive, No. 400, Cambridge, MA 02140-2369.

Abstract

Near major bus terminals, multiple bus arrivals per signal cycle and a convergence of buses from conflicting directions can make it impractical to apply signal priority logic that attempts to interrupt the signal cycle for each bus. This research explores signal control logic for reducing bus delay around a major bus terminal in Boston, Massachusetts, where the busiest intersections see almost four buses per signal cycle. With a traffic microsimulation to model a succession of signal priority tactics, a reduction in bus delay of 22 s per intersection was obtained, with no significant impact on general traffic. The general strategy was to provide buses with green waves, so that they are stopped at most once, coupled with strategies to minimize initial delay. The greatest delay reduction came from passive priority treatments: changing phase sequence, splits, and offsets to favor bus movements. Green extension and green insertion were found to be effective for reducing initial delay and for providing dynamic coordination. Dynamic phase rotation, from lagging to leading left, proved less effective. Cycle-constrained free actuation, in which an intersection has a fixed cycle length within which two phases can alternate freely, provided flexibility for effective application of early green and green extension at one intersection with excess capacity. Emphasis is given to the approach of providing aggressive priority with compensation for interrupted phases, highlighting the compensation mechanism afforded by actuated control with snappy settings and long maximum greens.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research Progress and Prospects of Transit Priority Signal Intersection Control Considering Carbon Emissions in a Connected Vehicle Environment;World Electric Vehicle Journal;2024-03-27

2. Optimization model for bus priority control considering carbon emissions under non-bus lane conditions;Journal of Cleaner Production;2023-05

3. Sustainability Impact of Bus Priority Treatments in Small-Scale Cities;Transportation Research Record: Journal of the Transportation Research Board;2023-04-27

4. Providing Priority to Public Transit in the Absence of Dedicated Lanes: An Exploratory Experiment on the Automated Guideway Transit System;Journal of Transportation Engineering, Part A: Systems;2022-07

5. Transit Signal Priority in Smart Cities;Transportation Systems for Smart, Sustainable, Inclusive and Secure Cities [Working Title];2020-12-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3