Cellular Automata–Based Modeling and Simulation of a Mixed Traffic Flow of Manual and Automated Vehicles

Author:

Yang Da12,Qiu Xiaoping12,Ma Lina1,Wu Danhong1,Zhu Liling1,Liang Hongbin1

Affiliation:

1. School of Transportation and Logistics, Southwest Jiaotong University, No. 111 Erhuanlubeiyiduan, Chengdu 610031, China

2. National United Engineering Laboratory of Integrated and Intelligent Transportation, No. 111 Erhuanlubeiyiduan, Chengdu 610031, China

Abstract

In recent years, automated vehicles have been developing rapidly, and some automated vehicles have begun to drive on highways. The market share of automated vehicles is expected to increase and will greatly affect traffic flow characteristics. This paper focuses on the mixed traffic flow of manual and automated vehicles. The study improves the existing cellular automaton model to capture the differences between manual vehicles and automated vehicles. Computer simulations are employed to analyze the characteristic variations in the mixed traffic flow under different automated vehicle proportions, lane change probabilities, and reaction times. Several new conclusions are drawn in the paper. First, with the increment of the proportion of automated vehicles, freeway capacity increases; the capacity increment is more significant for single-lane traffic than for two-lane traffic. Second, for single-lane traffic flow, reducing the reaction time of the automated vehicle can significantly improve road traffic capacity—as much as doubling it—and reaction time reduction has no obvious effect on the capacity of the two-lane traffic. Third, with the proportion increment of automated vehicles, lane change frequency reduces significantly. Fourth, when the density is 15 < ρ < 55 vehicles/km, the addition of 20% automated vehicles to a traffic flow that consisted of only manual vehicles can decrease congestion by up to 16.7%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference7 articles.

1. BergholzR., TimmK., and WeisserH. Autonomous Vehicle Arrangement and Method for Controlling an Autonomous Vehicle. US Patent 6151539 A, filed Nov. 3, 1998, and issued Nov. 21, 2000.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3