Trajectory Planning for Multiple Autonomous Vehicles at Short‐Distance Tandem Signalized Intersections Based on Rule‐Free Framework

Author:

Lin Wenfeng1,Hu Xiaowei1,Wang Jian2ORCID

Affiliation:

1. School of Transportation Science and Engineering Harbin Institute of Technology Harbin 15000 China

2. School of Management Harbin Institute of Technology Harbin 15000 China

Abstract

High‐level autonomous vehicles (AVs) have more possibilities for improving traffic efficiency. The improvement of traffic efficiency for mixed flow at near‐saturated short‐distance tandem signalized intersections (STSI) needs attention. Most of the existing studies design a generalized control rule for AVs, ignoring the heterogeneity among different AVs. Herein, a multivehicle trajectory planning framework based on a multiagent reinforcement learning (MRL) algorithm is designed to heuristically explore the optimal traffic efficiency of mixed flow at STSI. The core algorithm of this framework is improved from the classical MRL algorithm multi‐agent proximal policy optimization based on the idea of the virtual group instead of designing control rules. The trajectories planned by the framework show outstanding performance in improving throughputs and reducing emissions at the global system level, comparing natural driving, classic adaptive cruise control model and cooperative adaptive cruise control model. The framework can be used to explore optimal traffic efficiency for mixed flow and better heterogeneous rules for high‐level AVs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3