Empirical Speed Behavior on Horizontal Ramp Curves in Interchanges in the Netherlands

Author:

Farah Haneen1,van Beinum Aries1,Daamen Winnie1

Affiliation:

1. Department Transport and Planning, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, P.O. Box 5048, 2600 GA Delft, Netherlands

Abstract

Several studies in the literature have indicated that interchanges are the most crash-prone areas within the motorway system in number and severity of accidents. The reason is the high level of turbulence as a result of vehicle lane changes and speed variability. To understand the safety consequences of an interchange design (e.g., type of connecting ramps, radii and superelevation of curves, and lane and shoulder widths), an in-depth investigation of driving speed behavior is needed. Such an investigation requires the collection of detailed trajectory data on vehicles on different interchanges. These types of data are rarely available, and as a result, such studies are scarce in the literature. The main objective of this present study was to analyze driver speed behavior on different ramps at interchanges, and to develop an operating speed prediction model as a function of the road design elements. Trajectory data on free-moving vehicles were derived from stabilized video images taken from a camera mounted underneath a helicopter, which hovered over the road areas studied. Data were collected from 29 curves at six freeway–freeway interchanges in the Netherlands. The sample included nine direct connections, 12 semidirect connections, and eight indirect connections. The findings showed that speeds were affected by several road geometric characteristics of the curves, by driver expectancy and design consistency, and by the percentage of trucks in traffic. The operating speed prediction models developed in the study will provide designers with tools to estimate the operating speed during the design process.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference10 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3