Heavy-Duty Diesel Truck Emissions Modeling

Author:

Abdelmegeed Mohamed A. Elbadawy1,Rakha Hesham1

Affiliation:

1. Center for Sustainable Mobility, Virginia Tech Transportation Institute, Virginia Polytechnic Institute and State University, 3500 Transportation Research Plaza, Blacksburg, VA 24061

Abstract

Heavy-duty vehicles are the second-largest source of greenhouse gas emissions and energy use within the transportation sector even though they represent only a small portion of on-road vehicles. Heavy-duty diesel vehicles (HDDVs) emit about half of all on-road emissions of nitrogen oxide (NOx). However, because of the limited amount of HDDV emissions data, research has focused on light-duty vehicle emissions. The majority of these microscopic models suffer from two major limitations: the models result in a bang-bang control system and calibration of the model parameters is not possible with publicly available data. This paper proposes to extend the Virginia Tech Comprehensive Power-Based Fuel Consumption Model (VT-CPFM) to overcome the two shortcomings in state-of-the-practice HDDV emissions models of carbon monoxide (CO), hydrocarbons (HCs), and NOx. Heavy-duty diesel truck (HDDT) data from the University of California, Riverside, were used for the calibration and validation processes. The study’s results were satisfying, especially for NOx, which was the main concern in HDDV emissions. Model validity and performance were evaluated by comparing the correlation of measured field data and estimated emissions between the VT-CPFM model and the comprehensive modal emissions model (CMEM). The results demonstrate the efficacy of the VT-CPFM model in replicating empirical observations producing better accuracy compared with other state-of-the-practice models (e.g., CMEM). Moreover, unlike the CMEM model, which requires extensive data collection for calibration purposes, the VT-CPFM model needs only GPS and publicly accessible data for calibration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference5 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3