Combined Effect of Moving Wheel Loading and Three-Dimensional Contact Stresses on Perpetual Pavement Responses

Author:

Wang Hao1,Al-Qadi Imad L.2

Affiliation:

1. Department of Civil and Environmental Engineering, and 205 North Mathews Avenue, MC-250, Urbana, IL 61801.

2. Illinois Center for Transportation, University of Illinois at Urbana–Champaign, 205 North Mathews Avenue, MC-250, Urbana, IL 61801.

Abstract

Tire–pavement interaction was analyzed with measured three-dimensional (3-D) tire contact stresses at various load levels (35, 44, and 53 kN) and constant tire pressure (720 kPa). The combined effect of moving wheel load and 3-D contact stresses on flexible pavement response was evaluated with a developed 3-D finite element (FE) model, which incorporated the measured 3-D tire contact stresses, hot-mix asphalt (HMA) viscoelasticity, and continuous moving load by using implicit dynamic analysis. In FE modeling, a perpetual pavement design with 254-mm HMA placed on 305-mm lime-modified subgrade was exposed to dual tire loading. The critical pavement responses under two loading conditions (uniform contact stresses and measured 3-D contact stresses) at various load levels were calculated and compared. The 3-D tire contact stresses induced greater pavement stresses and strains at the pavement near surface (shear strains and octahedral shear stresses) and at deeper depths (transverse tensile strains and compressive strains) comparable to the uniform contact stresses; these results suggest that using uniform contact stresses could underestimate pavement damage, especially near-surface cracking potential and shear flow in perpetual pavement. The transverse tangential stresses induce the outward shear flow from the tire center and shear strain concentration at the pavement near surface. Increasing the wheel load mostly increases contact stresses at the tire edge and the corresponding shear strains and octahedral shear stresses. The difference between pavement responses caused by uniform contact stresses and 3-D contact stresses decreases when wheel load increases.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3