Characterization of Asphalt Concrete Layer Interfaces

Author:

Romanoschi Stefan A.1,Metcalf John B.2

Affiliation:

1. Department of Civil Engineering, Kansas State University, 2118 Fiedler, Manhattan, KS 66506

2. Department of Civil and Environmental Engineering, Louisiana State University, 3508A CEBA, Baton Rouge, LA 70803

Abstract

A new constitutive model for the asphalt concrete layer interface is proposed. Direct shear tests at four levels of normal load and three temperatures were performed on two types of asphalt concrete layer interface: with and without a tack coat. The shear stress-displacement curves determined in these tests were used to derive the constitutive model, as the tangential and normal stresses at the interface are decoupled. In the proposed model, the shear stress and displacement are proportional until the shear stress equals the shear strength and the interface fails. After failure, a friction model may be used to represent the interface condition. Three parameters were considered to completely describe the interface behavior: the interface reaction modulus K, which is the slope of the shear stress-displacement curve; the shear strength Smax; and the friction coefficient after failure μ. For the interface with a tack coat, K and Smax are not affected by the normal stress level, but they are affected for the interface without a tack coat. All three parameters of the constitutive model are temperature dependent. A testing configuration for determining the shear fatigue behavior of the interface is also described. The fatigue tests indicated a linear increase of the permanent shear displacement with the number of load repetitions, the rate of increase being higher for higher stresses. The fatigue test can be used for a comparative evaluation of the durability of different types of interfaces.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3