Increasing the Capacity of Signalized Intersections with Dynamic Use of Exit Lanes for Left-Turn Traffic

Author:

Zhao Jing1,Ma Wanjing1,Zhang H. Michael2,Yang Xiaoguang1

Affiliation:

1. Key Laboratory of Road and Traffic Engineering of the Ministry of Education, 4800 Cao'an Road, Shanghai 201804, China.

2. Department of Civil and Environmental Engineering, University of California, Davis, Davis, CA 95616, and Department of Transportation Engineering, Tongji University, 4800 Cao'an Road, Shanghai 201804, China.

Abstract

Many congested intersections have a heavy traffic volume on movements for which capacity is insufficient because of geometric limitations. An unconventional approach that increases the capacity of heavily congested intersections is presented: this approach opens up exit lanes for left-turn traffic dynamically with the help of an additional traffic light installed at the median opening (the presignal); this situation is referred to as exit lanes for left-turn (EFL) control. An optimization problem for EFL control was formulated as a mixed-integer nonlinear program, in which the geometric layout, main signal timing, and presignal timing were integrated. The mixed-integer nonlinear program was solved by transformation into a series of mixed-integer linear programs. The latter problem can be solved with the standard branch-and-bound technique. The results of extensive numerical analysis and VISSIM simulation showed that the EFL approach could increase intersection capacity and reduce traffic delay substantially, especially under high left-turn demand. Moreover, the EFL control can be applied to one or multiple legs simultaneously; thus the control is particularly useful for intersections with an unbalanced left demand and a degree of saturation in travel directions.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3