Integrated Optimization Model of Lane Function and Signal Control for Tandem Intersections

Author:

Zheng Zhe12ORCID,An Kun1ORCID,Su Zicheng1ORCID,Zheng Nan2,Ma Wanjing1ORCID

Affiliation:

1. The Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, P.R. China

2. Department of Civil Engineering, Monash University, Melbourne, Victoria, Australia

Abstract

This paper presents an integrated optimal controller for the tandem intersection with lane function design and signal control, aiming to improve intersection efficiency and service reliability with a multi-objective formulation. The tandem intersection is a type of unconventional intersection that can re-organize the vehicles at entrance lanes with sorting areas, and improve intersection capacity through the coordination of pre-signals and main signals. However, most existing studies related to tandem intersection control assume that the lane functions in the sorting areas for both the through and left-turn movements are the same, and the traffic demand remains static. To fill these gaps, this paper first identifies six different tandem control modes based on the different lane functions and phase sequence schemes in the sorting area, and the corresponding delay models for each mode are derived. Furthermore, an integrated optimization model is developed to minimize the mean and semistandard deviation of the intersection delay, and the Non-dominated Sorting Genetic Algorithm-II is used to obtain the optimal solution. A case study is conducted in a real-world intersection in Melbourne, Australia, under various traffic conditions. The results show that the proposed method can decrease average delay and queue length by 19.61% and 20.94%, respectively, compared with conventional intersection design.

Funder

National Science Fund for Distinguished Young Scholars

the Key Program of the National Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3