Development of a Flow Number Predictive Model

Author:

Rodezno Maria Carolina1,Kaloush Kamil E.1,Corrigan Matthew R.2

Affiliation:

1. Department of Civil, Environmental, and Sustainable Engineering, Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

2. Federal Highway Administration, 1200 New Jersey Avenue SE, Washington, DC 20590.

Abstract

The NCHRP 9-19 panel recommended the repeated load permanent deformation test as a laboratory procedure that could be used to evaluate the resistance of a hot-mix asphalt (HMA) to tertiary flow. No standard test protocol addresses the required laboratory stress to be applied. The test can take several hours until tertiary flow is reached and in many cases the sample may never fail. A model capable of predicting or providing general guidance on the flow number characteristics of a mix can be of great value. The model can be ideally used as a guideline to determine the stress–temperature combination that will yield tertiary flow within a reasonable testing time. In this study, an effort was undertaken to develop a flow number predictive model. The model uses HMA mixture volumetric properties and stress–temperature testing conditions as predictor variables. The laboratory test data used are a combination of two valuable databases. The first one included tests conducted at Arizona State University; the second one included tests conducted by the FHWA Mobile Asphalt Material Testing Laboratory. Ninety-four mixtures were evaluated, and 1,759 flow number test results were available. Various regression models were evaluated by combining several independent variables. The final model selected had fair statistical measures of accuracy, and it covered a wide range of mixtures, gradations, and binder properties, as well as laboratory-applied stress. As more testing data become available, the model could be refined and recalibrated for better accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference8 articles.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3