Enhanced Model for Resilient Response of Soils Resulting from Seasonal Changes as Implemented in Mechanistic–Empirical Pavement Design Guide

Author:

Cary Carlos E.1,Zapata Claudia E.1

Affiliation:

1. Department of Civil, Sustainable, and Environmental Engineering, Arizona State University, P.O. Box 875306, Tempe, AZ 85287-5306.

Abstract

The present study deals with the revision of the current model in the Mechanistic–Empirical Pavement Design Guide (MEPDG) used to predict the environmental factor for unfrozen unbound materials (FU), which is used to adjust the resilient response of soils resulting from seasonal changes. A large database with data from the existing literature and studies at Arizona State University was developed to evaluate the model. The results suggest that the environmental factor is underestimated for fine-grained materials with high plasticity under dry (arid) conditions. However, insufficient data were available to enhance the FU models for wetter conditions. Three fundamental factors that may have impacts on the FU values were evaluated in this study: stress state, compaction energy (soil density), and soil type. The stress state was found to have little to no impact on the predictions of FU. But density changes and soil type were found to be important. The potential for soil index properties to be predictive variables was assessed. Models dependent on enhanced moisture content accounting for the effect of soil type are proposed for nonplastic and plastic materials. The range of predicted FU values is in close agreement with the actual measured FU values found from laboratory studies. It is recommended that the new models be adopted in the revision of the MEPDG model for the drier conditions described in this report and that research be conducted to enhance the FU approach in the current MEPDG for wetter conditions brought on for a variety of reasons (e.g., groundwater table change, increased rainfall, and frost effects).

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference19 articles.

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Postflooding Asphalt Pavement Condition Assessment for Roadway Operation Strategy;Journal of Transportation Engineering, Part B: Pavements;2024-03

2. Improving Field Moisture Monitoring of Recycled and Virgin Aggregates;Transportation Research Record: Journal of the Transportation Research Board;2023-05-05

3. Resilient modulus of a compacted clay with different moisture and temperature histories;International Journal of Pavement Engineering;2023-02-17

4. Pave-Ut—Hungarian environmental load application;Acta Technica Jaurinensis;2022-06-08

5. Prediction of resilient modulus with consistency index for fine-grained soils;Transportation Geotechnics;2021-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3