Connecting Networkwide Travel Time Reliability and the Network Fundamental Diagram of Traffic Flow

Author:

Mahmassani Hani S.1,Hou Tian2,Saberi Meead2

Affiliation:

1. Transportation Center, 215 Chambers Hall, 600 Foster Street, Evanston, IL 60208.

2. Department of Civil Engineering, Northwestern University, 600 Foster Street, Evanston, IL 60208.

Abstract

The existence of the network fundamental diagram (NFD) has been established at the urban network scale. It relates three traffic descriptors: speed, density, and flow. However, its deterministic nature does not convey the underlying variability within the network. In contrast, travel time reliability as a network performance descriptor is of growing concern to both the traveling public and traffic managers and policy makers. The objectives of this paper were to extend travel time reliability modeling from the link–path level to the network level and to connect overall network variability to NFD. Robust relationships between travel time variability and network density and flow rate were analytically derived, investigated, and validated with both simulated and real-world trajectory data. The distance-weighted standard deviation of travel time rate, as a measure of travel time variability, was found to increase monotonically with network density. A maximum network flow rate existed beyond which network travel time reliability deteriorated at a much faster pace. The results also suggest that these relationships are inherent network properties (signature) that are independent of demand level. The effects of en route information on the proposed relationships were also studied. The results showed that en route information reduced network travel time variability. The findings provide a strong connection between NFD and travel time variability, and this connection can be used further for modeling of network travel time reliability and assessment of measures intended to improve reliability of travel in a network.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference33 articles.

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3