Active and Passive Bus Priority Strategies in Mixed Traffic Arterials Controlled by SCOOT Adaptive Signal System

Author:

Oliveira-Neto Francisco Moraes1,Loureiro Carlos Felipe G.2,Han Lee D.1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Tennessee, 223 Perkins Hall, Knoxville, TN 37919.

2. Department of Transport Engineering, Federal University of Ceará, Campus do Pici, Bloco 703, CP 12.144, Fortaleza, CE 60.455-760, Brazil.

Abstract

In recent years, bus priority techniques for signals controlled by traffic management centers have become a viable alternative to reduce passenger delays at signalized intersections, especially in mixed traffic corridors. However, before any bus signal priority strategy is deployed in such corridors, the impacts on the different users of the system should be evaluated. The main objective of this work was to assess the operational performance of passive and active bus priority techniques in fixed and real-time signal systems of one of the main arterial corridors in Fortaleza, Brazil. As a secondary objective, it also evaluated the operational benefits of a SCOOT adaptive signal control system, comparing it with well-adjusted fixed-time plans optimized by TRANSYT, for periods of medium and high traffic volumes. In the evaluation of alternative scenarios, the following performance measures were considered: vehicle delay and number of stops simulated by SCOOT, as well as bus and automobile travel times observed in the field during the operation of each scenario. The results did not favor the adoption of passive and active priority schemes in the studied corridor; this led to the conclusion that SCOOT's real-time control, programmed for a good signal progression of the general traffic (buses and automobiles), is the best signal control strategy for an arterial corridor similar to the one under analysis.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference22 articles.

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3