Traffic-Responsive Signal Control at Intersections Using Real-Time Data of Vehicles Connected via V2X Communication

Author:

Park Hyung Geun1,Kim Sunghoon1ORCID,Kim Taehyung1ORCID

Affiliation:

1. Korea Transport Institute, Sejong 30147, Republic of Korea

Abstract

The positive effect of traffic-responsive signal control can be assured when real-time traffic data is reliable, but data reliability may be an issue that depends on the number of probe vehicles equipped with navigation devices or smartphones. However, there is a high chance of improving reliability with the recent deployment of connected vehicles (CVs) that use the vehicle-to-everything (V2X) communication data. Therefore, this paper proposes a traffic signal control strategy that utilizes V2X communication data obtained from CV operations, which is called the capacity waste reduction (CWR) strategy. In this strategy, vehicle queues on each road lane as an intersection approaches are initially estimated using V2X data. Then, the signal control algorithm determines the duration of the green signal for the currently applied phase based on the estimated vehicle queues. Furthermore, the strategy includes an algorithm for active priority signal control for the vehicles of bus rapid transit systems. The efficiency of the provided control strategy is tested with the VISSIM microsimulation program at different levels of the market penetration rate (MPR) of CVs. Based on the results of the experiment, the proposed strategy shows positive effects in both decreasing travel delay and increasing traffic flow even at the low levels of MPR of CVs. The results of the proposed strategy can be used as the base data for the development of smart intersection operations.

Funder

Technology Innovation Program

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Reference36 articles.

1. Agent-based network transmission model using the properties of macroscopic fundamental diagram

2. The SCOOT on-line traffic signal optimization technique;P. B. Hunt;Traffic Engineering and Control,1982

3. SCATS: the Sydney co-ordinated adaptive traffic system-principles, methodology, algorithms;P. R. Lowrie

4. Adaptive traffic signal control using approximate dynamic programming

5. A study on traffic signal control at signalized intersections in vehicular ad hoc networks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3