Temperature Behavior of Pervious Concrete Systems

Author:

Kevern John T.1,Schaefer Vernon R.2,Wang Kejin2

Affiliation:

1. Department of Civil and Mechanical Engineering, University of Missouri, Kansas City, Kansas City, MO 64110.

2. Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, Iowa 50011.

Abstract

To achieve the permitted stormwater effluent limits required by the Clean Water Act, many best management practices (BMPs) are being utilized to reduce the overall stormwater volume and provide initial pretreatment and pollutant removal. One such BMP is use of portland cement pervious concrete (PCPC), which allows stormwater to pass through the pavement into an aggregate base below to infiltrate. Until now, the temperature response of the entire system (concrete, aggregate base, and natural soil) was not known. Since PCPC is an infiltration-based BMP, once a frost line forms under the base the infiltrating capacity is reduced or eliminated. PCPC also is recommended for use in warmer climates as a cooler pavement alternative to conventional concrete or asphalt. To quantify the temperature behavior of a pervious concrete system, a fully monitored parking lot—composed of half traditional concrete and half PCPC—was constructed at Iowa State University as part of the Iowa Pervious Concrete Stormwater Project. Sensors were installed through the profile of both pavements and into the underlying soil. The results show that insulation from the aggregate base underneath the pervious concrete substantially delays the formation of a frost layer and permeability is restored when meltwater is present. It was also observed that in direct sunlight, the pervious pavement became hotter than traditional concrete, whereas the daily low temperature of the two was similar, indicating less heat storage capacity in the pervious concrete.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3