Accuracy and Performance of Improved Speed-Flow Curves

Author:

Dowling Richard G.1,Singh Rupinder1,Wei-Kuo Cheng Willis1

Affiliation:

1. Dowling Associates, 180 Grand Avenue, Suite 995, Oakland, CA 94612; Metropolitan Transportation Commission, 101 Eighth Street, Oakland, CA 94607

Abstract

Skabardonis and Dowling recommended updated Bureau of Public Road speed-flow curves for freeways and signalized arterials to improve the accuracy of speed estimates used in transportation demand models. These updated curves generally involved the use of higher power functions that show relatively little sensitivity to volume changes until demand exceeds capacity, when the predicted speed drops abruptly to a very low value. Skabardonis and Dowling demonstrated that the curves provide improved estimates of vehicle speeds under both uncongested and queueing conditions; however, they did not investigate the impact of these curves on the performance of travel demand models. Practitioners have been concerned about the impacts of such abrupt speed-flow curves on the performance of their travel demand models. Spiess has stated that higher power functions are more difficult computationally for computers to evaluate and that more abrupt speed-flow curves adversely affect the rate of convergence to equilibrium solutions in the traffic assignment process. In this paper the impact of the Skabardonis and Dowling updated speed-flow curves on the performance of selected travel demand models is investigated. The updated speed-flow curves were found to significantly increase travel demand model run times. However, it is demonstrated that an alternative speed-flow equation developed by Akçelik has similar or better accuracy and provides much superior convergence properties during the traffic assignment process. The Akçelik curve significantly reduced travel demand model run times.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3