Multiple-Model Framework for Assessment of Real-Time Crash Risk

Author:

Pande Anurag1,Abdel-Aty Mohamed1

Affiliation:

1. Department of Civil and Environmental Engineering, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816-2450.

Abstract

This study is based on real-time models of risk assessment for rear-end and lane-change-related crashes on freeways. These models were developed in recent studies on the basis of historical crash data and corresponding traffic data collected through underground loop detectors on Interstate-4 in Orlando, Florida. In this study the potential of these models was explored for identification of crashes that were not part of the database used to develop the models. These crashes include single-vehicle crashes that might result from evasive actions taken by drivers to avoid vehicles in front (i.e., a rear-end crash) or in a neighboring lane (i.e., a lane-change-related crash). In addition, traffic data corresponding to rear-end and lane-change-related crashes reported on the short form (because they did not involve any injuries or loss of life) also were subjected to the models. The results indicate that the models satisfactorily identify single-vehicle crashes (other than rollovers) as well as the short-form crashes. The study also demonstrates virtual real-time application of these models over complete traffic data collected for a month. A careful analysis of the models' output on these data sets is used to make critical inferences about their expected performance in a real-time application scenario. The proposed real-time application framework for these models not only is expected to improve traffic safety but also could yield significant enhancement in traffic operation by eliminating some of the incident-related congestion.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3