Operating Speed Prediction Models for Horizontal Curves on Rural Four-Lane Highways

Author:

Gong Huafeng1,Stamatiadis Nikiforos2

Affiliation:

1. 216 Raymond Building, Department of Civil Engineering, University of Kentucky, Lexington, KY 40506-0281.

2. 265 Raymond Building, Department of Civil Engineering, University of Kentucky, Lexington, KY 40506-0281.

Abstract

Previous studies documented that a uniform design speed does not necessarily guarantee design consistency on rural two-lane facilities. Since a similar process is also followed for four-lane rural highways, it is reasonable to assume that similar inconsistencies could be found on such roadways. The operating speed-based method has been extensively used in other countries as the primary method to examine design consistency. Numerous studies have been completed on rural two-lane highways for predicting operating speeds and evaluating design consistency. However, few studies have considered these issues for rural four-lane highways. Therefore, prediction models for rural four-lane highways are needed. This study aims to develop models to predict operating speeds on horizontal curves of rural four-lane highways. A parallel study documented that speeds on inside and outside lanes are different; therefore, two multiple linear regression models are developed. For the inside lane, the significant factors are shoulder type, median type, pavement type, approaching section grade, and horizontal curve length. For the outside lane, factors include shoulder type, median type, approaching section grade, presence of approaching curve, and curve radius and length. The factors in the two models indicate that the curve itself mainly influences a driver's speed choice. The models were validated by using the data-splitting approach, and validation shows that there are no statistical differences between the predicted and field-observed operating speeds.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Operating Vehicles’ Speed Prediction Models;Promet - Traffic&Transportation;2024-06-20

2. Influence of Curve Geometry Factors on Driver’s Speed Decision Making When Passing through a Horizontal Curve;Journal of Transportation Engineering, Part A: Systems;2024-01

3. Analytical Models and Techniques;Springer Optimization and Its Applications;2024

4. Modeling car and heavy commercial vehicle crashes on two-lane rural highways using the Poisson-Tweedie regression approach;Journal of Transportation Safety & Security;2023-11-23

5. Two-Lane Bidirectional Traffic Flow Patterns;Recent Advances in Traffic Engineering;2023-10-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3