Evaluating Potential for Reflection Cracking with Rolling Dynamic Deflectometer

Author:

Lee Jeffrey L. Y.1,Chen Dar-Hao2,Stokoe Kenneth H.1,Scullion Thomas3

Affiliation:

1. University of Texas at Austin, 2600 San Jacinto, ECJ 9.227, Campus Mail Code: C1792, Austin, TX 78712

2. Construction Division, Texas Department of Transportation, 4203 Bull Creek #39, Austin, TX 78731

3. Texas Transportation Institute, Texas A&M University System, 3135 TAMU, College Station, TX 77843-3135

Abstract

A common rehabilitation strategy used for repairing aged concrete pavement is to place a hot-mix asphalt (HMA) overlay on the existing concrete pavement. However, reflection cracks are often found to propagate from the underlying cracks and joints through the HMA layer. As such, much reflection cracking is believed to be caused by differential vertical and horizontal movements in the concrete pavement. A common method of determining the differential vertical movements is by measuring the load transfer efficiency (LTE) at the joints by using nondestructive deflection testing devices. A study was conducted with a rolling dynamic deflectometer (RDD) to evaluate the movement of joints in concrete pavements. Evaluation of joint movements by RDD testing permits estimation of the LTE of each joint or transverse crack. On the basis of the assumption that reflection cracks are more likely to form at joints or cracks with low LTE than with high LTE, pavement engineers can use the results to identify areas with low LTE and perform necessary repairs at these locations to reduce the potential for creating reflection cracking. Field data collected before rehabilitation work on US-82 near Gainesville, Texas, are presented as a case study, and the benefits of continuous deflection profiling for use in the district’s rehabilitation strategy are discussed.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Civil and Structural Engineering

Reference16 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3