Repair Bond Strength of High-viscosity Glass-ionomer Cements Using Resin Composite Bonded with Light- and Self-cured Adhesive Systems

Author:

El-Deeb HA,Mobarak EH

Abstract

Clinical Relevance High-viscosity glass-ionomer cements (HVGICs) used with atraumatic restorative treatment can be repaired with light- or self-cured adhesive systems; however, the repair bond strength of two-step, self-etching and one-step adhesives in the light-cure mode surpass one-step self-cure adhesives. Working on a feasible self-cure approach in the absence of such in rural areas as well as in war zones is of prime importance. SUMMARY Objectives: Despite the success rate of high-viscosity glass-ionomer cements (HVGICs) used in atraumatic restorative treatment (ART) restorations, partial or bulk fracture of the proximal portion has been recorded to be one of the main causes of proximal restoration failures. Repair of these restorative materials requires a practical solution, especially in cases where there is a lack of electricity. Thus, the purpose of this study was to evaluate the repair microshear bond strength (μSBS) of three HVGICs using a resin composite in association with adhesive systems having different curing modes (ie, light- vs self-curing mode). Methods and Materials: A total of 105 discs (12 mm in diameter and 2 mm thick) of three HVGICs: GC Fuji IX GP Fast (GC Corporation, Tokyo, Japan); Fuji IX GP glass-ionomer cement containing chlorhexidine (GC Corporation, Tokyo, Japan); and ChemFil Rock zinc-reinforced HVGIC (Dentsply De-Trey GmbH, Konstanz, Germany) were prepared. Each specimen was divided into three horizontal sections, according to the tested adhesive system or curing mode: Clearfil SE Bond 2 (two-step, self-etch adhesive); (Kuraray Noritake Dental Inc., Tokyo, Japan) in light-cure mode; Clearfil Universal Bond (one-step, self-etch adhesive); (Kuraray Noritake Dental Inc., Tokyo, Japan) in light-cure mode; or Clearfil Universal Bond (one-step, self-etch adhesive); (Kuraray Noritake Dental Inc., Tokyo, Japan) in self-cure mode, mixing it with Clearfil DC Activator (Kuraray Noritake Dental Inc., Tokyo, Japan). A resin composite microcylinder was bonded to each horizontal section of each specimen using starch tubes. The bonded discs were stored in artificial saliva at 37°C for 24 hours. A μSBS test was conducted using a universal testing machine, while failure modes were determined using scanning electron microscopy. Data were statistically analyzed using two-way analysis of variance (ANOVA), one-way ANOVA, and Bonferroni post hoc tests (α=0.05). Results: Two-way ANOVA revealed a statistically significant effect for the adhesive systems (p<0.01) and not for the HVGICs (p=0.05) nor their interactions (p=0.99). When using Clearfil SE Bond 2 and Clearfil Universal in a light-cure mode, significantly higher μSBS values were found when compared with Clearfil Universal in a self-cure mode. Conclusions: The three tested HVGICs can be successfully repaired using two-step or one-step self-etch adhesive systems. The one-step self-etch adhesive system in light-cure mode is preferred when compared with the self-cure mode.

Publisher

Operative Dentistry

Subject

General Dentistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3