Seismic productivity of blasts: A case-study of the Khibiny Massif

Author:

Baranov S. V., ,Zhukova S. A.,Korchak P. A.,Shebalin P. N., , ,

Abstract

The authors study the property of production-scale blasts to induce seismic events classified as micro shocks, rock bursts and earthquakes caused by sudden slips along faults. The study area is the production performance zone of Apatit’s Kirovsk Branch. It is situated in the southeast of the Khibiny Massif on the Kola Peninsula and is subjected to continuous autonomous seismicity monitoring. The subject of the research is the production blasts and seismic events recorded by the seismic monitoring station of Apatit’s Kirovsk Branch between January 1996 and June 2019. Blasting-induced seismic events were identified using the nearest neighbor method and the seismicity-dependent proximity function of the space–time–magnitude (energy), calculated with respect to the blasts. The threshold of the proximity function to assume a seismic event as the blast-induced event was selected using the model-independent method of seismic catalog randomization. It is shown that the number of blasting-induced seismic events—blasting productivity—obeys an exponential distribution irrespective of magnitudes or occurrence depths of the studied events. The obtained result conforms with the earlier determined productivity law for natural earthquakes on a global and regional scale, as well as for mining-induced seismicity in the Khibiny Massif. Accordingly, the productivity distribution is governed by the properties of a medium and is independent of the source mechanism of a triggering event (explosion, seismicity). The paper presents the research findings supported by the Russian Foundation for Basic Research, Project No. 19-05-00812, and in the framework of State Contract No. 007-00186-18-00 with the Kola Branch of the Geophysical Service of the Russian Academy of Sciences.

Publisher

Ore and Metals Publishing House

Subject

Management of Technology and Innovation,Industrial and Manufacturing Engineering,Economic Geology,Geotechnical Engineering and Engineering Geology,Business and International Management

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3