Single cycle to failure in bending of three standard and five locking plates and plate constructs

Author:

Blake C. A.,Torrance B. S.,Tacvorian E. K.,Cabassu J. B.,Gaudette G. R.,Kowaleski M. P.,Boudrieau R. J.

Abstract

SummaryObjective: To evaluate the biomechanical properties of standard and locking plates in bending. We hypothesised that titanium (Ti) constructs would have the greatest deformation and that String of Pearl (SOP) constructs would have the greatest strength and stiffness, and would behave differently compared to plates alone.Methods: Dynamic compression plates (DCP), stainless steel (SS) limited contact (LC)-DCP®, Ti LC-DCP, locking compression plates (LCP), 10 mm and 11 mm advanced locking plate system (ALPS 10 / 11), SOP and Fixin plates were evaluated individually and as constructs applied to a validated bone model simulating a bridging osteosynthesis. Bending stiffness and strength were compared using one-way ANOVA with post hoc Tukey, and un-paired t-test (p <0.05).Results: The SOP plates had significantly greater stiffness than all other plates Ti LCDCP, ALPS 10 and Fixin plates had significantly lower stiffness than all other plates. The SOP constructs had the highest mean bending stiffness, and strength that was significantly different from only the Ti LC-DCP, ALPS 10 and Fixin constructs. The ALPS 10 constructs had the lowest mean bending stiffness, and strength that was significantly different from only ALPS 11 and SOP constructs. Comparison of bending structural stiffness of plates versus constructs showed a significant difference in all plate pairs except for the DCP and ALPS 10.Clinical relevance: Due to differing plate construct properties inherent to these diverse implant systems, identical approaches to fracture management and plate application cannot be applied.Presented at the 38th Annual Conference of the Veterinary Orthopedic Society, Snowmass, CO, USA March 6, 2011 (Mark S. Bloomberg Memorial Research Award recipient).

Publisher

Georg Thieme Verlag KG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3