Effect of screw angulation and multiple insertions on load-to-failure of polyaxial locking system

Author:

Glowacki JakubORCID,Bartkowiak TomaszORCID,Paczos Piotr,Mietlinski PatrykORCID,Zawadzki PawelORCID,Lapaj Lukasz

Abstract

Purpose Polyaxial locking plates rely on the alignment between the thread-to-thread connections of the screw head and the plate hole. These implants have provided substantial support for surgeons. In particular, extended screw positioning have proven to be beneficial in the fixation of challenging fractures. This study aimed to investigate the mechanical properties of ChM 5.0 ChLP polyaxial screws inserted in off-axis trajectories, including multiple insertions and to correlate these parameters with the screw head and the plate hole thread-to-thread engagement. Methods Polyaxial locking screws were inserted into the plates at various angles (0°,10°,15°, -15° off-axis). Multiple time inserted screws were placed firstly at 15°, then 0° and finally -15° off-axis in the same plate hole. A microCT scan of the plate-hole and screw-head interface was conducted before destructive tests. Representative screws from each group were also examined by Scanning Electron Microscope. Results The standard insertion at 0° sustained the greatest maximum bending strength without relocation in the screw hole. Screws inserted at 10° and 15° (one time) showed a significant reduction in load-to-failure of up to 36% and 55%, (p = 0.001) (p = 0.001) respectively. Screws inserted at -15° after a maximum of three multiple insertions with angle shift, showed a total reduction in force of up to 70% (p = 0.001). A microCT analysis of thread engagement showed significant correlations. However, the results obtained for multiple insertions were highly variable. Conclusions ChM 5.0 ChLP polyaxial locking system has valuable properties that foster fracture fixation, providing various surgical options. Nevertheless, the freedom of off-axis placement and multiple insertions of the screws comes at the price of reduced force. When possible surgeons should minimize the angles of insertions.

Funder

Poznan University of Medical Sciences and Poznan University of Technology

ChM Sp. z o.o., Lewickie, Poland

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference25 articles.

1. Stabilization of proximal tibial fractures with the LIS-System: Early clinical experience in Berlin;M Schütz;Injury,2003

2. Locked Internal Fixator;MJ Kääb;J Orthop Trauma,2004

3. A biomechanical study comparing polyaxial locking screw mechanisms;J Hebert-Davies;Injury,2013

4. Was leistet die winkelstabile Plattenosteosynthese bei der distalen Radiusfraktur des alten Menschen?;M Walz;Unfallchirurg,2004

5. Not All Polyaxial Locking Screw Technologies Are Created Equal;B Schoch;JBJS Rev,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3