Improved VMD‐KFCM algorithm for the fault diagnosis of rolling bearing vibration signals
Author:
Affiliation:
1. College of Electrical and Information Engineering, Lanzhou University of Technology Lanzhou China
2. The Engineering Department the University of Melbourne Melbourne Australia
3. Gansu Natural Energy Research Institute Lanzhou China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Signal Processing
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/sil2.12026
Reference32 articles.
1. An improved EEMD with multiwavelet packet for rotating machinery multi-fault diagnosis
2. Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review
3. A review on empirical mode decomposition in fault diagnosis of rotating machinery
4. Engine fault diagnosis method based on optimised variational mode decomposition and kernel fuzzy C‐means clustering;Bi F.R.;J. Vib. Meas. Diagn,2020
5. fault diagnosis of wind turbine gearbox based on KFCM optimised by particle swarm optimization;Li Z.;J. Vib. Meas. Diagn,2017
Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Research on the Fault Diagnosis Method of Rotating Machinery Based on Improved Variational Modal Decomposition and Probabilistic Neural Network Algorithm;Applied Sciences;2024-08-21
2. Comparative analysis of surface roughness level for bearing coating using VMD of vibration signal;Physica Scripta;2024-07-19
3. Rolling bearing fault diagnosis based on variational mode decomposition and weighted multidimensional feature entropy fusion;Journal of Vibroengineering;2024-01-21
4. Enhancing Rolling Bearing Fault Diagnosis in Motors Using the OCSSA-VMD-CNN-BiLSTM Model: A Novel Approach for Fast and Accurate Identification;IEEE Access;2024
5. A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency;Advanced Engineering Informatics;2023-10
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3