Integrating renewable energy and V2G uncertainty into optimal power flow: A gradient bald eagle search optimization algorithm with local escaping operator

Author:

Hassan Mohamed H.1ORCID,Kamel Salah1ORCID,Domínguez‐García José Luis2,Molu Reagan Jean Jacques3ORCID

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering Aswan University Aswan Egypt

2. IREC Catalonia Institute for Energy Research Barcelona Spain

3. Technology and Applied Sciences Laboratory, U.I.T. of Douala University of Douala Douala Cameroon

Abstract

AbstractHere, a new approach is proposed for solving the optimal power flow (OPF) problem in transmission networks using a Gradient Bald Eagle Search Algorithm (GBES) with a Local Escaping Operator (LEO). The method takes into account uncertainty of the renewable energy sources (wind energy and photovoltaic systems) and Vehicle‐to‐Grid (V2G) in the stochastic OPF problem. To improve the efficiency of the proposed technique and enhance its local exploitation capability, the LEO method's selection features are utilized. Monte Carlo methods are employed to estimate the generation costs of the renewable sources and PEVs and study their feasibility. The uncertainty of the renewable sources and PEVs is represented by Weibull, lognormal, and normal probability distribution functions (PDFs). The GBES approach is experimentally compared with well‐known meta‐heuristics using twenty‐three different test functions, and the results indicate its superiority over BES and other recently developed algorithms. Furthermore, the proposed method's effectiveness is evaluated using IEEE 30‐bus test system under various scenarios, and the simulation results demonstrate that it can effectively address OPF issues considering renewable energy sources and V2G, providing superior optimal solutions compared to other algorithms.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3