A machine learning model for Alzheimer's disease prediction

Author:

Rani Pooja1,Lamba Rohit2,Sachdeva Ravi Kumar3,Kumar Karan2ORCID,Iwendi Celestine4

Affiliation:

1. MMICTBM Maharishi Markandeshwar (Deemed to be University) Ambala Haryana India

2. Electronics and Communication Engineering Department Maharishi Markandeshwar Engineering College Maharishi Markandeshwar (Deemed to be University) Ambala Haryana India

3. Department of Computer Science & Engineering Chitkara University Institute of Engineering and Technology Chitkara University Rajpura Punjab India

4. School of Creative Technologies University of Bolton Bolton UK

Abstract

AbstractAlzheimer’s disease (AD) is a neurodegenerative disorder that mostly affects old aged people. Its symptoms are initially mild, but they get worse over time. Although this health disease has no cure, its early diagnosis can help to reduce its impacts. A methodology SMOTE‐RF is proposed for AD prediction. Alzheimer's is predicted using machine learning algorithms. Performances of three algorithms decision tree, extreme gradient boosting (XGB), and random forest (RF) are evaluated in prediction. Open Access Series of Imaging Studies longitudinal dataset available on Kaggle is used for experiments. The dataset is balanced using synthetic minority oversampling technique. Experiments are done on both imbalanced and balanced datasets. Decision tree obtained 73.38% accuracy, XGB obtained 83.88% accuracy and RF obtained a maximum of 87.84% accuracy on the imbalanced dataset. Decision tree obtained 83.15% accuracy, XGB obtained 91.05% accuracy and RF obtained maximum 95.03% accuracy on the balanced dataset. A maximum accuracy of 95.03% is achieved with SMOTE‐RF.

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A comprehensive review for chronic disease prediction using machine learning algorithms;Journal of Electrical Systems and Information Technology;2024-07-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3