Affiliation:
1. Department of EECS University of Cincinnati Cincinnati Ohio USA
2. School of Software Beihang University Beijing China
3. Metropolitan Sewer District of Greater Cincinnati Cincinnati Ohio USA
Abstract
AbstractCombined sewer overflows represent significant risks to human health as untreated water is discharged to the environment. Municipalities, such as the Metropolitan Sewer District of Greater Cincinnati (MSDGC), recently began collecting large amounts of water‐related data and considering the adoption of deep learning (DL) solutions like recurrent neural network (RNN) for predicting overflow events. Clearly, assessing the DL's fitness for the purpose requires a systematic understanding of the problem context. In this study, we propose a requirements engineering framework that uses the problem frames to identify and structure the stakeholder concerns, analyses the physical situations in which the high‐quality data assumptions may not hold, and derives the software testing criteria in the form of metamorphic relations that incorporate both input transformations and output comparisons. Applying our framework to MSDGC's overflow prediction problem enables a principled way to evaluate different RNN solutions in meeting the requirements.
Publisher
Institution of Engineering and Technology (IET)
Subject
Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献