Nonlinear Analysis of Bearing Characteristics of Stiffened Deep Cement Mixing Piles under Vertical Loading

Author:

Jiu Yongzhi1,Gao Yunfeng1,Lei Fuguang1,Zhu Yanzhi1,Zhang Zhizeng1

Affiliation:

1. School of Civil Engineering and Architecture, Zhongyuan University of Technology, Zhengzhou 450007, China

Abstract

Stiffened deep cement mixing (SDCM) piles are composite piles that combine the advantages of single large-diameter deep cement mixing (DCM) and precast concrete piles. They comprise precast concrete piles as the core and cast-in-place DCM piles as the outer layer. This study evaluates the bearing characteristics of SDCM piles under vertical loading. The composite modulus of elasticity of SDCM piles is first introduced and determined using the area-weighted average method. Then, the reliability of the proposed method is described by comparing the calculated results with the findings of the existing literature. Furthermore, a nonlinear simplified analysis method based on the load transfer method is proposed for vertical bearing characteristics of equal- and short-core SDCM piles under vertical loading. This method is developed by the finite difference method. The accuracy of the simplified method is validated by comparing its results with those from existing tests, theoretical analysis, and finite element simulations. The results of their study indicated that the area-weighted average method calculates the composite modulus of elasticity of the composite pile section of the SDCM piles with an error below 0.5% compared to the analytical method. This finding represents sufficient accuracy. The simplified calculation method established in this study is computationally stable. When the iteration factor is set to 10−6, as the number of discrete nodes n on the pile increases, the calculation results are stable with a good convergence when n > 30. The vertical bearing capacity and pile top stiffness of SDCM piles increased with the length of the core piles. There was a reasonable core-to-length ratio for SDCM piles in specific scenarios. An excessively long DCM pile section made its lower part force-free for a given length of core piles. The appropriate length of core piles should be determined in actual projects to avoid unnecessary material waste. An optimum ratio of core piles for SDCM piles was determined. Beyond this optimal value, an increase in the ratio of core piles controlled the pile settlement in a limited manner.

Funder

National Natural Science Foundation for Young Scientists of China

natural science foundation of the Henan Province

Publisher

MDPI AG

Reference41 articles.

1. Zhao, Y., Zhang, Z., Ye, G., and Cai, Y. (2015). Proceeding of the 2015 National Engineering Geology Academic Annual Meeting Science Press, Geology Committee of Geological Society of China.

2. Impact of reinforced core on performance and failure behavior of stiffened deep cement mixing piles;Wonglert;Comput. Geotech.,2015

3. Comparative analysis of MC strength composite piles and cast-in-place piles in an engineering project;Li;Build. Sci.,2021

4. Hibernia geotechnical investigation and site characterization;Thompson;Can. Geotech. J.,1989

5. Application of jet grouting pile method in Japan;Hu;Chin. J. Geotech. Eng.,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3