An improved energy‐efficient driving strategy for routes with various gradients and speed limits

Author:

Liu Xiao1,Tian Zhongbei2ORCID,Jiang Lin1ORCID,Lu Shaofeng3,Zeng Pingliang4

Affiliation:

1. Department of Electrical Engineering and Electronics University of Liverpool Liverpool UK

2. School of Engineering University of Birmingham Birmingham UK

3. Shien‐Ming Wu School of Intelligent Engineering South China University of Technology Guangzhou China

4. School of Automation Hangzhou Dianzi University Hangzhou China

Abstract

AbstractWith the increasing concerns about railway energy efficiency, two typical driving strategies have been used in actual train operation. One includes a sequence of full power traction, cruising, coasting, and full braking (CC). The other uses coasting–remotoring (CR) to replace cruising in CC. However, energy‐saving performance by CC and CR, which can be affected by route parameters of gradients and speed limits, has not been fully compared and studied. This paper analyses the energy distribution of CC and CR considering various route parameters and proposes an improved strategy for different gradients and speed limits. The detailed energy flow of CC and CR is analysed by Cauchy–Bunyakovsky–Schwarz inequality and the generalised Hölder's inequality, and then, a novel driving strategy CC_CR is designed. To verify the theoretical results and the effectiveness of the proposed strategy, three simulators with CC, CR, and CC_CR driving modes have been developed and implemented into case studies of four scenarios as well as a real‐world metro line. Simulation results demonstrate that CR can only outperform CC on routes with steep downhill and CC_CR is always the best strategy. The energy savings of CC_CR can be as much as 15% more than CR and 42% greater than CC.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3