Auxiliaries’ power and energy demand prediction of battery electric vehicles using system identification and deep learning

Author:

Schäfers Lukas1ORCID,Franke Kai1ORCID,Savelsberg Rene2ORCID,Pischinger Stefan1ORCID

Affiliation:

1. Chair of Thermodynamics of Mobile Energy Conversion Systems RWTH Aachen University Aachen Germany

2. FEV Europe GmbH Aachen Germany

Abstract

AbstractThe energy demand of the auxiliaries of battery electric vehicles can account for a significant share of the total energy demand of a trip and must be taken into account for the prediction of the vehicle's remaining driving range or the implementation of predictive driving functions. This paper investigates a method that uses system identification and neural networks with bidirectional long short‐term memory layers to predict the power requirements of the auxiliaries depending on information that is known prior to the trip. By using a self‐learning, data‐driven approach as well as data that can be measured without additional instrumentation, a prediction is made possible without the need to design detailed physical models in advance. Additionally, a rule‐based allocation of the training data based on environmental conditions is implemented, which serves to adapt individual models to different climatic modes of the thermal system. The potential of the method is demonstrated for three different systems showing a prediction accuracy of on average 3% to 8% in terms of energy, while the deviation of the predicted power consumption is on average about 500 watts. Due to the complete automation of the process, a further increase in prediction accuracy can be expected.

Funder

RWTH Aachen University

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3