Enhancing BEV Energy Management: Neural Network-Based System Identification for Thermal Control Strategies

Author:

Franke Kai1,Hemkemeyer David2,Schutzeich Patrick1,Schäfers Lukas2,Pischinger Stefan1

Affiliation:

1. TME, RWTH Aachen University

2. FEV Europe GmbH

Abstract

<div class="section abstract"><div class="htmlview paragraph">Modeling thermal systems in Battery Electric Vehicles (BEVs) is crucial for enhancing energy efficiency through predictive control strategies, thereby extending vehicle range. A major obstacle in this modeling is the often limited availability of detailed system information. This research introduces a methodology using neural networks for system identification, a powerful technique capable of approximating the physical behavior of thermal systems with minimal data requirements. By employing black-box models, this approach supports the creation of optimization-based control strategies, such as Model Predictive Control (MPC) and Reinforcement Learning-based control (RL). The system identification process is executed using MATLAB Simulink, with virtual training data produced by a Simulink models to establish the method's feasibility. The neural networks utilized for system identification are implemented in MATLAB code. This study conducts a comparative analysis between the white-box models and the generated black-box models, focusing on their predictive accuracy, to highlight the trade-offs and advantages inherent to each modeling approach. The findings from this study suggest that employing neural network-based black-box models can enhance the development of advanced control strategies in BEVs. As a forward-looking perspective, the research outlines a specific approach for the integration of these models into control strategy development. Furthermore, it discusses the potential for methodological enhancements and the application of the system identification process to additional thermal system components, with the overall goal of enhancing energy management in BEVs.</div></div>

Publisher

SAE International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3