Quantification of storage required for preserving frequency security in wind‐integrated systems

Author:

Bera Atri1ORCID,Nguyen Nga2ORCID,Chalamala Babu1ORCID,Mitra Joydeep3ORCID

Affiliation:

1. Energy Storage Technology and Systems Sandia National Laboratories Albuquerque New Mexico USA

2. Electrical & Computer Engineering University of Wyoming Laramie Wyoming USA

3. Electrical & Computer Engineering Michigan State University East Lansing Michigan USA

Abstract

AbstractThe penetration of wind power generation into the power grid has been accelerated in recent times due to the aggressive emission targets set by governments and other regulatory authorities. Although wind power has the advantage of being environment‐friendly, wind as a resource is intermittent in nature. In addition, wind power contributes little inertia to the system as most wind turbines are connected to the grid via power electronic converters. These negative aspects of wind power pose serious challenges to the frequency security of power systems as penetration increases. In this work, an approach is proposed where an energy storage system (ESS) is used to mitigate frequency security issues of wind‐integrated systems. ESSs are well equipped to supply virtual inertia to the grid due to their fast‐acting nature, thus replenishing some of the energy storage capability of displaced inertial generation. In this work, a probabilistic approach is proposed to estimate the amount of inertia required by a system to ensure frequency security. Reduction in total system inertia due to the displacement of conventional synchronous generation by wind power generation is considered in this approach, while also taking into account the loss of inertia due to forced outages of conventional units. Monte Carlo simulation is employed for implementing the probabilistic estimation of system inertia. An ESS is then sized appropriately, using the system swing equation, to compensate for the lost inertia. The uncertainty associated with wind energy is modeled into the framework using an autoregressive moving average technique. Effects of increasing the system peak load and changing the wind profile on the expected system inertia are studied to illustrate various factors that might affect system frequency security. The proposed method is validated using the IEEE 39‐bus test system.

Funder

Office of Electricity Delivery and Energy Reliability

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3