Assessment and management of frequency stability in low inertia renewable energy rich power grids

Author:

Saleem Muhammad Ismail1,Saha Sajeeb1,Roy Tushar Kanti2,Ghosh Subarto Kumar3ORCID

Affiliation:

1. School of Engineering University of the Sunshine Coast Queensland Australia

2. School of Engineering Deakin University Victoria Australia

3. Department of Electrical and Electronic Engineering Rajshahi University of Engineering & Technology Rajshahi Bangladesh

Abstract

AbstractThe integration of the renewable energy sources (RESs) into the power grid, drives a significant transformation in the conventional power generation landscape. This transition from traditional synchronous generators to inverter based RESs introduces unique challenges in maintaining the grid frequency stability due to the reduced system inertia. The inherent stochastic nature of the RES power generation, load demand, and grid inertia includes further complexity in the assessment of frequency stability. Existing studies have limitations, including neglecting the stochastic nature of RES generation and load demand fluctuations, relying on limited metrics, and lacking a comprehensive day‐to‐day assessment. To address these shortcomings of the existing approaches, this paper introduces a novel methodology for assessing frequency stability in power grids with high RES penetration. It proposes three indices for evaluating grid frequency sensitivity, resiliency, and permissibility amidst varying RES integration. Utilizing a stochastic approach, the study incorporates uncertainties in RES generation and load demand, offering a comprehensive framework for day‐to‐day frequency stability analysis. Additionally, it presents a systematic method to ascertain the necessary inertial support for maintaining desired frequency reliability in RES‐dominated grids. The effectiveness of these methodologies is validated through a case study on a modified IEEE 39‐bus test system, demonstrating their applicability in ensuring reliable grid operation under high RES scenarios.

Publisher

Institution of Engineering and Technology (IET)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3