Driving training‐based optimization (DTBO) for global maximum power point tracking for a photovoltaic system under partial shading condition

Author:

Rehman Haroon1ORCID,Sajid Injila1ORCID,Sarwar Adil1ORCID,Tariq Mohd2ORCID,Bakhsh Farhad Ilahi3ORCID,Ahmad Shafiq4ORCID,Mahmoud Haitham A.4ORCID,Aziz Asma5ORCID

Affiliation:

1. Department of Electrical Engineering, ZHCET Aligarh Muslim University Aligarh India

2. Department of Electrical and Computer Engineering Florida International University Miami Florida USA

3. Department of Electrical Engineering National Institute of Technology Srinagar India

4. Industrial Engineering Department, College of Engineering King Saud University Riyadh Saudi Arabia

5. School of Engineering Edith Cowan University Joondalup Western Australia Australia

Abstract

AbstractThe presence of bypass diodes in photovoltaic (PV) arrays can mitigate the negative effects of partial shading conditions (PSCs), which can cause multiple peak characteristics at the output. However, conventional maximum power point tracking (MPPT) methods can develop errors and detect the local maximum power point (LMPP) instead of the global maximum power point (GMPP) under certain circumstances. To address this issue, several artificial intelligence (AI)‐based methods have been proposed, but they result in complicated and unreliable methodologies. This study introduces the driving training‐based optimization (DTBO) method, which aims to address the partial shading (PS) problem quickly and reliably in maximum power point (MPP) detection for PV systems. DTBO improves tracking speed and reduces fluctuations in the power output during the tracking period. The proposed method is extensively verified using the Typhoon hardware‐in‐the‐loop (HIL) 402 emulator and compared to conventional methods such as particle swarm optimization (PSO), and JAYA, as well as the recently proposed adaptive JAYA (AJAYA) method for MPPT in a PV system under similar conditions.

Funder

King Saud University

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3