An improved regression‐based perturb and observation global maximum power point tracker methods

Author:

Gundogdu Hasan1,Demirci Alpaslan1ORCID,Tercan Said Mirza1ORCID,Durusu Ali12ORCID

Affiliation:

1. Department of Electrical Engineering Yildiz Technical University Istanbul Turkey

2. Clean Energy Technologies Institute Yildiz Technical University Istanbul Turkey

Abstract

AbstractSolar photovoltaic energy is a vital renewable resource because it is clean, endless, and pollution‐free. Due to the fast growth of the semiconductor and power electronics sectors, photovoltaic (PV) technologies are climbing significant attention in modern electrical power applications. Operating PV energy conversion systems at the maximum power point is essential for getting the maximum power output and raising efficiency. This paper proposes a regression‐based Perturb and Observe method to quickly find a global maximum power point, avoiding being stuck in local maxima, likewise analytical and metaheuristic methods. The improved control focuses on the narrowed search areas by linear and non‐linear regression analyses using the generated PV model on a flexible Python environment. Furthermore, the method's accuracy is validated in real time under variable temperatures, irradiations, and loads. This method was proven with a hardware implementation. The proposed method is more than 98% accurate and can withstand long‐term modelling. The suggested regression‐based perturbation and observation method provided a short learning time and easy implementation. Additionally, the dynamic recorded results can be visualized for researchers to utilize efficiently.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3