Improved intrusion detection method for communication networks using association rule mining and artificial neural networks
Author:
Affiliation:
1. Department of Computer Engineering, Islamshahr BranchIslamic Azad UniversityIslamshahrIran
2. Young Researchers and Elite Club, Islamshahr BranchIslamic Azad UniversityIslamshahrIran
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Computer Science Applications
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/iet-com.2019.0502
Reference30 articles.
1. Performance Comparison of Support Vector Machine, Random Forest, and Extreme Learning Machine for Intrusion Detection
2. Intrusion damage assessment for multi‐stage attacks for clouds
3. ErtamF. YamanO.: ‘Intrusion detection in computer networks via machine learning algorithms’. 2017 Int. Artificial Intelligence and Data Processing Symp. (IDAP) Turkey 2017 pp.1–4
4. Cyber intrusion detection by combined feature selection algorithm;Mohammadi S.;J. Inf. Secur. Appl.,2019
5. A network intrusion detection system based on a Hidden Naïve Bayes multiclass classifier
Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A novel cloud architecture approach to detect network intrusions using an enhanced artificial neural network;International Journal of Information Technology;2024-06-15
2. A novel Bayesian optimizable ensemble bagged trees model for cryptocurrency fraud prediction approach;SECURITY AND PRIVACY;2024-05-19
3. Feature Extraction and Anomaly Detection Using Different Autoencoders for Modeling Intrusion Detection Systems;Arabian Journal for Science and Engineering;2024-04-17
4. Interpretable prediction of acute respiratory infection disease among under-five children in Ethiopia using ensemble machine learning and Shapley additive explanations (SHAP);DIGITAL HEALTH;2024-01
5. Improving Network Intrusion Detection with Convolutional Neural Networks and Data Balancing Techniques;Lecture Notes in Networks and Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3