Interpretable prediction of acute respiratory infection disease among under-five children in Ethiopia using ensemble machine learning and Shapley additive explanations (SHAP)

Author:

Tadese Zinabu Bekele1ORCID,Hailu Debela Tsegaye2,Abebe Aschale Wubete3,Kebede Shimels Derso3ORCID,Walle Agmasie Damtew4,Seifu Beminate Lemma5,Nimani Teshome Demis6

Affiliation:

1. Department of Health Informatics, College of Medicine and Health Science, Samara University, Samara, Ethiopia

2. Department of Health Informatics, School of Public Health, Bule Hora University, Bule Hora, Ethiopia

3. Department of Health Informatics, School of Public Health, College of Medicine and Health Science, Wollo University, Dessie, Ethiopia

4. Department of Health Informatics, College of Health Science, Mettu University, Mettu, Ethiopia

5. Department of Public Health, College of Medicine and Health Science, Samara University, Samara, Ethiopia

6. Department of Epidemiology and Biostatistics, School of Public Health College of Medicine and Health Science, Haramaya University, Harar, Ethiopia

Abstract

Background Although the prevalence of childhood illnesses has significantly decreased, acute respiratory infections continue to be the leading cause of death and disease among children in low- and middle-income countries. Seven percent of children under five experienced symptoms in the two weeks preceding the Ethiopian demographic and health survey. Hence, this study aimed to identify interpretable predicting factors of acute respiratory infection disease among under-five children in Ethiopia using machine learning analysis techniques. Methods Secondary data analysis was performed using 2016 Ethiopian demographic and health survey data. Data were extracted using STATA and imported into Jupyter Notebook for further analysis. The presence of acute respiratory infection in a child under the age of 5 was the outcome variable, categorized as yes and no. Five ensemble boosting machine learning algorithms such as adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), Gradient Boost, CatBoost, and light gradient-boosting machine (LightGBM) were employed on a total sample of 10,641 children under the age of 5. The Shapley additive explanations technique was used to identify the important features and effects of each feature driving the prediction. Results The XGBoost model achieved an accuracy of 79.3%, an F1 score of 78.4%, a recall of 78.3%, a precision of 81.7%, and a receiver operating curve area under the curve of 86.1% after model optimization. Child age (month), history of diarrhea, number of living children, duration of breastfeeding, and mother's occupation were the top predicting factors of acute respiratory infection among children under the age of 5 in Ethiopia. Conclusion The XGBoost classifier was the best predictive model with improved performance, and predicting factors of acute respiratory infection were identified with the help of the Shapely additive explanation. The findings of this study can help policymakers and stakeholders understand the decision-making process for acute respiratory infection prevention among under-five children in Ethiopia.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3