Deadlock detection, cooperative avoidance and recovery protocol for mixed autonomous vehicles in unstructured environment

Author:

Qi HongSheng1ORCID,Song Yang2,Huang ZhiTong3,Hu XianBiao2

Affiliation:

1. College of Civil Engineering and Architecture Zhejiang University, 866 Yuhangtang Road Hangzhou China

2. Department of Civil and Environmental Engineering Pennsylvania State University, 212 Sackett Building University Park PA USA

3. Leidos Inc. 6300 Georgetown Pike McLean Virginia USA

Abstract

AbstractDeadlock is an extreme traffic flow operational state during rush hours. Many literatures have studied autonomous vehicle coordination under the umbrella of deadlock‐free conditions. These researches either assume the trajectories are fixed or state spaces are discrete and limited on structured road spaces or don't consider the influence of human‐driven vehicles (HDV), which are not controllable from the system's viewpoint. This manuscript relaxes the above limitations and proposes a method to detect, avoid, and recover from deadlock for mixed autonomous vehicles flow. Firstly, two types of deadlocks, weak and strong , are defined based on deadlock properties. Next, two detection algorithms based on evasion distance propagation are proposed. After that, we present a cooperative control method to avoid deadlock based on chain‐spillover‐free and loop‐free strategies. If a deadlock has already happened, cooperative protocols based on re‐routing and backward‐forward strategies are designed. The proposed model is tested in Carla. The results show that the deadlocks can be detected 13 seconds earlier than their occurrence, and it takes about 6 seconds to unlock the existing deadlock. The results also show that with the proposed deadlock avoidance algorithm, the traffic throughput can be increased by 35.7%, and with the proposed deadlock recovery protocol, the traffic throughput can be increased by another 18%.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Law,Mechanical Engineering,General Environmental Science,Transportation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3