Affiliation:
1. State Key Laboratory of Automotive Safety and Energy Tsinghua University Beijing China
2. DiDi Chuxing Beijing China
Abstract
AbstractOne critical difficulty to high‐level automated driving is the decision‐making process of automated vehicles in complicated traffic environments, especially in situations mixed of pedestrians and vehicles. This paper proposes a differentiated decision‐making algorithm to promote passing capability and efficiency in mixed traffic conditions. First, the behavioural characteristic of pedestrians, denoted as the pedestrian feature index, is estimated by a multi‐layer perception module input with quantitative analysis of pedestrian action. Based on estimation results, the decision algorithm merges pedestrian feature index into intelligent driver model and adjusts corresponding parameters, which used to be unchangeable so that the ego‐vehicle can make differential decisions according to various pedestrian features. Validation on the PIE dataset shows that the accuracy of pedestrian feature estimation is ensured. A simulation scenario is established utilizing cellular automata, and the results indicate that the proposed decision‐making algorithm can greatly improve passing efficiency under safety and manoeuvrability prerequisite.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Law,Mechanical Engineering,General Environmental Science,Transportation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献